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Abstract. Chemically non-equilibrium neutral gas mixture flows of N2/N and O2/O with electronic excitation are studied.
The one-temperature model of transport properties taking into account electronic states of both molecules and atoms is
developed. The generalized Chapman–Enskog method is applied to derive the closed set of governing equations and to
evaluate the transport terms. The transport coefficients of thermal conductivity, diffusion and thermal diffusion, shear and
bulk viscosity, as well as the Prandtl number are calculated in the temperature range 500–50000 K for various mixture
compositions. Contribution of the electronic degrees of freedom to the transport properties is found to be important, especially
for atomic species.
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INTRODUCTION

In non-equilibrium fluid dynamics, great attention is focused on the study of transport processes, that is important for
various applications in aerospace and plasma sciences. During the reentry of an aircraft into a planetary atmosphere,
the temperature grows sharply behind a shock wave up to thousands degrees Kelvin, which results in the excitation of
internal degrees of freedom, dissociation and ionization processes. Under such conditions, the account for electronic
excitation becomes necessary for the modeling of high-temperature gas mixture flows. While the role of rotational and
vibrational degrees of freedom in the energy transfer is widely studied in the literature (see Ref. [1] and references
therein), the influence of electronic excitation of molecules and, especially, atoms on the transport phenomena is
not understood until the present time. In recent papers [2, 3], the near-equilibrium plasma of atomic hydrogen with
electronically excited states was studied, and the contribution of electronic levels to thermal conductivity was found
to be important. A theoretical model of transport properties in a non-equilibrium mixture flow taking into account
electronic excitation of both molecules and atoms was proposed recently in Ref. [4].

The purpose of the present paper is to generalize the model proposed in [4] for non-equilibrium flows of N2/N and
O2/O mixtures and calculate heat conductivity, shear and bulk viscosity, diffusion and thermodiffusion coefficients in
the temperature range 500–50000 K. The influence of electronic excitation on all transport coefficients is evaluated.
On the basis of the calculated transport coefficients and specific heats, the Prandtl number is estimated. Ionization
processes are not considered in the present paper since its objective is to study the pure effect of electronic excitation.
In future work we plan to include ionization processes.

MACROSCOPIC PARAMETERS AND GOVERNING EQUATIONS

We consider a one-temperature chemically non-equilibrium flow of a gas mixture for which the following relation
between characteristic times holds:

τtr < τrot < τvibr < τel ≪ τreact ∼ θ . (1)

Here τtr, τrot , τvibr, τel , and τreact are the characteristic times for translational, rotational, vibrational and electronic
relaxation, and chemical reactions; θ is the mean time of the variation of gas-dynamic parameters. For this relation,
chemical reactions can be considered on the basis of the maintaining Maxwell–Boltzmann distributions over the
velocity and internal energy levels.



In the present study, we take into account rotational, vibrational and electronic modes of molecules as well as
electronically excited states of atomic species. Thus the internal energy of molecules and atoms is modeled as follows
[4]:

εc
l =

{
εmol

ni j = εel(n)+ εvibr(n, i)+ εrot(n, i, j),

εat
n = εel(n),

(2)

where εel , εvibr, and εrot are the energies of the electronic, vibrational and rotational degrees of freedom respectively
(n, i, j are the correspondingly quantum numbers, c is the chemical species). Hereafter we denote by l the set of
quantum numbers n, i, j, for molecules and the electronic level n for atoms. For the calculation of the internal energy
of molecules we use the spectroscopic data from [5], the electronic states of atoms are provided in Ref. [6]. The
electronic energy is taken from the tables of the spectroscopic data, the vibrational energy for each electronic state is
calculated on the basis of the Morse potential for anharmonic oscillators, the rotational energy is simulated taking into
account its dependence on the electronic and vibrational level [6].

The closed set of governing equations for the macroscopic parameters taking into account electronic degrees of
freedom of both molecules and atoms is derived from the kinetic equations for distribution function fcl(r,u, t) using
the generalized Chapman–Enskog method [1, 4]. In the absence of external forces, the governing equations have the
following form:

dnc

dt
+nc∇ ·v+∇ · (ncVc) = Rreact

c , c = 1, ...,L, (3)

ρ
dv
dt

+∇ ·P = 0, (4)

ρ
dU
dt

+∇ ·q+P : ∇v = 0, (5)

here nc is the number density of species c, v is the gas velocity, L is the number of chemical species, U is the total
specific energy including electronic degrees of freedom, Vc is the diffusion velocity, Rreact

c is the production term due
to chemical reactions, ρ is the mixture density, P is the pressure tensor, q is the heat flux.

ZERO AND FIRST-ORDER APPROACHES

In the zero-order approximation of the modified Chapman–Enskog method, the distribution functions are obtained in
the form:

f (0)cl =
( mc

2πkT

)3/2 nc scl

Zint
c (T )

exp
(
−mcc2

c

2kT
−

εc
l

kT

)
, (6)

where mc is the mass of a particle of c species, T is the temperature, cc = uc − v is the peculiar velocity, k is the
Boltzmann constant, scl is the statistical weight for the internal state l, Zint

c (T ) is the equilibrium internal partition
function:

Zint
c (T ) = ∑

l
scl exp

(
−

εc
l

kT

)
.

The distribution functions (6) represent the local equilibrium Maxwell–Boltzmann distributions of molecules and
atoms over the velocity and internal energy, and non-equilibrium distribution over chemical species. A substantial
difference from the models developed earlier is that for atoms, we obtain not only the Maxwell velocity distribution,
but also the Boltzmann distribution over the electronic energy levels.

The Chapman–Enskog method makes it possible to express, in each approximation, the transport terms as functions
of the main macroscopic parameters and their spatial derivatives. In the zero-order approximation, the pressure tensor
takes a diagonal form P = pI (p is the hydrostatic pressure, I is the unit tensor), whereas the remaining transport terms
are equal to zero: Vc = q = 0.

In the first-order approximation of the modified Chapman–Enskog method, the distribution function is obtained in
the following form

f (1)cl = f (0)cl

(
− 1

n
Acl ·∇ lnT − 1

n ∑
d

Dd
cl ·dd − 1

n
Bcl : ∇v − 1

n
Fcl∇ ·v − 1

n
Gcl

)
(7)



The first-order correction depends on the gradients all macroscopic parameters and contains the unknown functions
Acl , Dcl , Bcl , Fcl , and Gcl which are found from the linear integral equations similar to those derived in [1].

Using the procedure of the modified Chapman–Enskog method, we derive the expressions for the pressure tensor,
diffusion velocity and energy flux in a viscous conductive flow:

P = (p − prel)I − 2η S − ζ ∇ · vI, (8)

Vc = − ∑
d

Dcd dc − DT c∇ lnT, (9)

q = −λ ′ ∇T − p∑
c

DTc dc + ∑
c

ρchcVc. (10)

Here S is the deformation rate tensor, dc is the diffusive driving force, hc is the specific enthalpy of species c.
In the equations (8)–(10), η , ζ are the shear and bulk viscosity coefficients, prel is the relaxation pressure, Dcd ,

DT c are the diffusion and thermal diffusion coefficients, λ ′ = λtr +λint is the partial thermal conductivity coefficient
including contributions of the translational and internal degrees of freedom. Note, that the normal mean stress in this
case includes the terms ζ ∇ · v and prel associated respectively to the flow compressibility and to the contribution of
non-equilibrium chemical reactions.

TRANSPORT COEFFICIENTS

In order to calculate the transport coefficients the unknown functions Acl , Dcl , Bcl , Fcl , and Gcl are expanded into the
series of the Sonine polynomials in the reduced peculiar velocity and Waldmann–Trübenbacher polynomials in the
internal energy [1]. The transport coefficients are expressed in terms of the expansion coefficients:

λ ′ = ∑
c

5
4

k
nc

n
ac,10 +∑

c
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2
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n
cint,c ac,01, (11)
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c,0, (12)
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2n
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η =
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ζ =−kT ∑
c

nc

n
fc,10, (15)

prel = kT ∑
c

nc

n
gc,10. (16)

cint,c is the internal specific heat at constant volume. We use the standard procedure of the Chapman–Enskog method
[1], and show that the integral equations for the unknown functions are reduced to the transport linear systems of
algebraic equations involving the bracket integrals as coefficients. The bracket integrals are simplified applying the
commonly used assumptions proposed by Mason and Monchick [7]. The transport coefficients are then calculated
numerically as the solutions of the transport linear systems using the Gauss method or iterative technique [8].

Finally, all transport coefficients are expressed in terms of the standard collision Ω(l,r)
cd integrals and integrals

β depending on the energy variation ∆ε in inelastic collisions. Ω(l,r)
cd integrals are calculated using the data from

[9]. Integrals β for rotational and vibrational energy exchanges are usually connected to the relaxation times of
corresponding internal modes. For the electronic transitions, there is no accurate data on the relaxation times. We
propose to approximate the corresponding integral using the deactivation rate constants for the transition from the
first to the ground electronic state. The deactivation rate constants are taken from [10, 11]: k10 N = 10−19 m3/c;
k10 O = 8 ·10−18 m3/c.



TABLE 1. Contribution of the translational and internal modes to the total thermal conductivity
coefficient λ ′ of species, %

T , K N N2 O O2
λtr,N λint,N λtr,N2 λrv,N2 λint,N2 λtr,O λint,O λtr,O2 λrv,O2 λint,O2

500 100 0 72.8 27.2 27.2 98.0 2.0 69.4 30.6 30.6
1000 100 0 66.1 33.9 33.9 99.4 0.6 62.1 37.9 37.9
5000 89.8 10.2 56.3 43.6 43.7 95.6 4.4 50.8 41.7 49.2
10000 70.1 29.9 47.9 40.5 52.1 89.7 10.3 49.0 41.5 51.0
15000 46.7 53.3 32.4 28.6 67.6 66.0 34.0 58.5 38.8 41.5
20000 21.4 78.6 33.0 27.8 67.0 30.0 70.0 69.2 32.9 30.8
25000 23.5 76.5 42.4 31.7 57.6 23.2 76.8 77.3 26.4 22.7
30000 38.3 61.7 53.9 34.2 46.1 30.1 69.9 83.0 20.9 17.0
35000 57.0 43.0 63.9 33.9 36.1 43.6 56.4 86.9 16.7 13.1
40000 72.2 27.8 71.8 31.7 28.2 58.3 41.7 89.6 13.4 10.4
45000 82.2 17.8 77.6 28.7 22.4 70.6 29.3 91.6 11.0 8.4
50000 88.3 11.7 82.0 25.6 18.0 79.5 20.5 93.1 9.1 6.9

RESULTS AND DISCUSSION

The transport coefficients were calculated for the N2/N and O2/O mixtures in the temperature range 500–50000 K
using the approach developed above. The results show that electronic excitation has a negligible effect on the coeffi-
cients of shear viscosity, diffusion and thermal diffusion is negligible, whereas the effect on the thermal conductivity
coefficients is significant.

The coefficients of thermal conductivity λtr,c (taking into account only the translation energy), λint,c (accounting
for the total internal energy), and λrv,c (only rotational-vibrational energy of the ground electronic state is taken into
account) of the components of N2/N and O2/O mixtures are given in Table 1 as functions of T . The excitation
of electronic degrees of freedom influences substantially the thermal conductivity. Thus, neglecting the electronic
states results in the significant underestimation of the molecular internal thermal conductivity: for the temperature
range 15000–20000 K, the coefficient λint,N2 is more than twice larger than the coefficient λrv,N2 calculated neglecting
the electronic states. The contribution of the electronic states to the thermal conductivity of atomic species in the
temperature range 12000–30000 K is even higher: for T ≈ 20000K, the coefficient of internal thermal conductivity for
atoms λint,N is approximately 4 times larger than the corresponding translational thermal conductivity coefficient λtr,N .
The same situation holds for O and O2: the coefficient λint,O2 is larger than the coefficient λrv,O2 in the temperature
range 5000–20000 K. For atomic oxygen, the contribution of electronic states to λ ′ prevails in the temperature
range 20000–35000 K. For example, the coefficient of internal thermal conductivity λint,O is 3 times larger than the
translational thermal conductivity coefficient λtr,O for T ≈ 25000K. It is interesting to note that in the temperature
range 40000–50000 K for N2 and 20000–50000 K for O2 λrv is slightly larger than λint . This effect is connected with
the similar behavior of the specific heats at constant pressure cp, which is discussed in [4].

In Fig. 1a, the total thermal conductivity λ ′ as a function of T is presented for three cases: xmol = 1;xa = 1;xmol =
xa = 0.5 (xmol , xa are the molar fractions of molecules and atoms). For atoms, the thermal conductivity coefficient
has a strong maximum in the temperature range T = 20000− 25000 K. The thermal conductivity coefficient λ ′ of
molecules also increases with the temperature. However, it remains lower than that for atoms. Thus we can conclude
that the most significant contribution to the total thermal conductivity of N2/N and O/O2 mixtures is given by atoms.

Fig. 1b presents the total coefficient of thermal conductivity λ ′ calculated as a function of xa at fixed temperatures: in
the mixture N2/N T = 22000 K, and in the mixture O2/O T = 24000 K. Fixed values of temperature correspond to the
maxima of the atomic specific heats. The thermal conductivity coefficients increase significantly with the rise of atomic
species. This confirms our conclusion that the most important contribution to the thermal conductivity coefficients is
given by atoms, and the main role belongs to the atomic electronic states.

The coefficient of shear viscosity η for the N2/N and O2/O mixtures is given in Fig. 2 as a function of T and xa.
The shear viscosity increases with the temperature. For 70–80% fraction of atomic component in the mixture one can
see a maximum for the shear viscosity coefficient.

Fig. 3 presents the coefficient of bulk viscosity ζ as a function of T and xa. With the rise of T , the bulk viscosity
coefficient behaves non–monotonically; for molecules, the bulk viscosity coefficient remains lower than that for atoms.
This is explained by the fact that the relaxation time of molecular internal energy is less than that for atoms; the
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FIGURE 1. Thermal conductivity coefficient λ ′ as a function of T (a) and nc (b).
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FIGURE 2. Shear viscosity coefficient η as a functions of T (a) and nc (b).
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FIGURE 3. Bulk viscosity coefficient ζ as a functions of T (a) and nc (b).
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discrepancy in the values of ζ for atoms is connected to the difference in the electronic deactivation rate constants.
For N2/N mixture, the bulk viscosity increases with the rise of the atomic molar fraction in the mixture. For the O2/O
mixture, we obtain the reversed situation: the maximum of the bulk viscosity value is achieved for the 10–30 % of
atomic component in the mixture.

In Fig. 4, the Prandtl number

Pr =
cpη
λ ′ (17)

is given as a function of T for different species. As can be seen, the Prandtl number of atomic and molecular
components depends on T . The Prandtl number for N achieves the maximum in the temperature range T = 18000−
20000 K with the value 0.72.

CONCLUSION

Theoretical model of transport properties in mixtures of dissociating nitrogen and oxygen with electronic excitation
of atoms and molecules is developed. The contribution of electronic degrees of freedom to thermal conductivity,
bulk viscosity and Prandtl number is found to be important. For atomic species, electronic excitation plays the most
important role in the temperature range 20000–30000 K, where electronic thermal conductivity exceeds substantially
the translational one. Further improvement of the model requires taking into account ionization processes.
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